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During the past faw years, the class of essentially non-oscillatory
schemes for the numerical simulation of hyperbolic equations and
systems has been constructed. Since then, a few extensions have been
made to multidimensional simulations of compressible flows, mainty in
the context of very regular structured meshes. In this paper, we first
recall and improve the results of an earlier paper about non-oscillatory
reconstruction on unstructured meshes, We put much emphasis on the
effective calculation of the reconstruction. Then, we describe a ¢lass of
numerical schemes on unstructured meshes. We give some applications
for its third order version. They demonstrate that & higher order of
gccuracy ts indeed obtained, even on very irtegular meshes. © 1994
Academic Press, Inc.

I. INTRODUCTION

During the past few years, a growing interest has emerged
for building high order accurate and robust schemes for
compressible flows simulations. One of the difficulties is the
appearance of possibly strong discontinuities that may
interact together, even for smooth initial data. To eliminate
this difficulty, a possible solution is to use a totally variation
diminishing scheme. Such a scheme has the property, at
least for 11D scalar equation, not to create new extrema and,
hence, to provide a nice treatment of discontinuities. They
have been since successfully and widely used with any type
of meshes (see, for example, {1] for a review and, among
many others, [2] for simulations on finite elements type
meshes ). Nevertheless, one of their main weaknesses is that
the order of accuracy falls to first order in regions of discon-
tinuity and at extrema, leading to excessive numerical dis-
sipation.

Various methods have been proposed to overcome this
difficulty (adaptation of the mesh, for example, see [3-5])
but one promising way may also be the class of the essen-
tially non-oscillatory schemes (ENO for short) introduced
by Harten, Osher, and others [6-10].

The basic idea of ENO scheme is to use a Lagrange type
interpolation with an adapted stencil: when a discontinuity
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is detected, the procedure looks for the region around this
discontinuity where the function is the smoothest. This
reconstruction technique may be applied either to the node
values [9] or to a particular function constructed from the
averages in control volumes [6-8]. In this latter case, the
approximation is done in such a way that it is conservative.
This enables us to approximate any piecewise smooth func-
tion at any desired order of accuracy.

Up to now, very few attempts have been done to adapt
these ideas to multidimensional flows, see, for example,
[9, 117 for smoothly varying grids and much less on
unstructured grids. For the latter topic, only preliminary
works exist (see [12-14,16]). In [14], together with a
review of the existing ENO methods, an extension to
general unstructured meshes is proposed. In particular, the
problem of the reconstruction is considered with many
details. The anthors use the same pplynomial approxima-
tion as us, but the selection of the stencil is completely
different because they utilize a general unstructured mesh
{with possibly several kinds of elements), thus the proper-
ties of its connectivity cannot be used as here. Because of
that, they cannot give any bounds on the number of poten-
tial stencil for a given cell, contrary to the present paper.
This is important because it is directly related to the cost of
the algorithm. Experimental results obtained with this class
of schemes are provided in {15]. In [16], several algo-
rithms are presented and tested on simple problems (linear
advection, Burger’s like equations), but their reconstruction
algorithms appear to be very complicated and costly. There
is no study of the numerical stability of the reconstruction,
Our experiences have shown that this point is fundamental.
In [ 127, we have studied two reconstruction methods based
on two different polynomial approximations; we have also
estimated the behavior of their leading coefficients. This
enables us to design an algorithm that has been tested for
third- and fourth-order approximation. We also have dis-
cussed the choice of candidate stencils: a small number is
sufficient. In [13], this reconstruction method has been
implemented for compressible flow problems and tested on
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a 2D shock tube problem on a triangular mesh. In this finite
volume scheme, the control volumes are the tnangles of the
mesh, If one wants this set as isotropic as possible, the mini-
mum number of possible stencils is much larger than in the
version presented in [12]; its comstruction is also less
natural, This makes the scheme of {13] very costly.

This paper is organized as follows: in Section 2, we recall
and improve the results obtained in [12]. Let us mention
that these results are valid, whatever the type of the under-
lying mesh (structured or not). In particular, we pay much
attention to the study of the numerical stability of the
reconstruction algorithm. In Section 3, we present our
numerical scheme, In Section 4, some numerical results are
presented. Last, several general comments are done in the
conclusion. Throughout this paper, the data are the mean
values on given control volumes.

2. THE RECONSTRUCTION PROBLEM
ON UNSTRUCTURED MESHES

Let us first recall basic facts about 1D reconstruction.
They will enlighten why a new method has to be introduced
in the context of unstructured meshes. We first recall how to
interpolate data in an essentially non-oscillatory Lagrange
type fashion and then how this is used to reconstruct 1D
data.

The essentially non-oscillatory interpolation. 1t relies
on two well-known properties of divided differences.
Let {yo<y;<--- <y be a stencil and consider
[ Vor - Vil v, the {(k+ 1)th divided difference of v, a
piecewise smooth function real valued function.

1. If v is p=n times continuously differentiable in the
interval [ vy, v, ], then

[¥0s s Yol v=0%NEL)/K! forall k<n
and some ¢, € [ yo, yi]

2. Ifo'” p <n, admits a jump (v’ 7 in [ yg, ¥ ], then

[v(p)] )
s veny v=0 (——_— for all &,
(o, ] |y — yolf =7
p+igk<n

These relations express that the divided differences remain
bounded whatever the mesh size for a smooth function but
go to infinity more or less quickly for unsmooth ones. With
the help of these two remarks, Harten et al. have derived the
following ENO interpolation algorithm: let us give a grid
{¥}, y,<¥;+1. For any j, first consider ¥ = {y,}.

Loif |[yn vy ol <IUy-6 v]0l Fh=
v yiahelse FO={y, |, v}

then

2. assume that ¥%'={yp,, ., y,}, a stencil for
(k + V}th-order reconstructiqn, is given (y, and y, are the
extreme points of the stencil). Y {[y;,_1, ¥4, - Y101 <
|[yj|]a vy yjk, yjk+1] Ul then y(k+l)=y{k)u {yjo_l}, else
FEN=FO Gy, 1}

Once the required number of points has been reached, one
can compute Lagrange interpolation based on the last
stencil of the aigorithm: this is the ENO interpolation of v.

The 1D conservative reconstruction. We consider a mesh
of R, {x;},.,, that may be regular or not. Around each
point, x, we define a control volume [x; 2, X\ 12]
where as usual,

Xit X4,
x.‘+|/2=“—"—i'“—'-

Let us consider «, a piecewise smooth real valued function.
We denote i, the average of e in [x,_,,, X, 1]

_ 1 Xit+ 172
u,.=~————j u(t) dt. (1)
Xivip— Xic12xop

There are two classical ways of reconstructing u from its
averages:

1. Reconstruction via primitive functions. One consider

W a primitive of u, say,

W(x)=r u(1) dt,

X)72

The values of W at the points x;, ., are easily recovered
from the data:

;
Wi(x;, 10)= Z (x4 10— xj_l/z) u;
i=0

One computes an essentially non-oscillatory reconstruction
R(W,n+1)of W, up to the order n + 1, as explained above.
Here, one sets y,= X, ;5. The reconstruction of u, R(u, n)is
defined as '

dR(W.n+ 1
R(u, ﬂ)=-—(-—d;c——-—'—).

Clearly, the average values
[xi_ s xis 12118 @,

2. Reconstruction via deconvolution. Here, the mesh
must be regular, x;, 5 — X,_ 5= 4x. One may see Eq. (1}
as the convolution product v of » and the characteristic
function of [ —d4x/2, Ax/27. One has v(x,)=#;. Then v is
reconstructed in an essentially non-oscillatory fashion as

of R(u,n) over any



2D FINITE VOLUME ENO SCHEME 47

explained above, where y,=x; Finally, onc applies a
deconvolution operator to R{v, n) asin [6], for example, to
obtain R(u, n).

Atkins and Casper [11] have used a tensor product of 1D
reconstruction to derive their numerical scheme, This is
possible because they assume a regular transformation
between a Cartesian mesh of {0, 1T x [0, 1] and their com-
putational grid. The same trick has been used in Shu et al.
[97. In the context of unstructured grid, these tricks cannot
work for at least two reasons:

1, The reconstruction via deconvolution needs very
regular meshes (each control volume can be obtained from
any other by translation),

2. The reconstruction via primitive function methods
needs to know point values of a primitive over any rectangle
from the data. Hence, these rectangles must be exactly
covered by control volumes, As it can be seen in Fig. 1, this
is, in general, impossible.

These two remarks show that a straightforward extension of
one-dimensional ideas is not sufficient for our purpose.
2.1. Preliminaries

In the sequel, the symbol R,[X, Y] denotes the set of
polynomiais P in the variables X and Y of total degree less
or equal to n;

PX,YV)=Y Y aX'v/
=0 i+j=1

The set R,[X, Y] is a vector space of dimension N(»)=
(n+1)(n+ 2)/2, a basis of which is the set of monomials

{(X =X (Y= o)} jams

FIG. 1. Covering of the rectangle [x,, x;)x [ ¥, ¥,] by tniangular
conirel volumes.

S81/114/14

where (x,, yo) is any point of R* The total degree of P does
not depend on the choice of (x;, y,). As we will show later,
this kind of basis is not the best-suited for practical calcula-
tions.

Let .# be a mesh of the finite element type. Associated
with this mesh, we also consider a triangulation ¥, We may
consider several kind of control volumes, for exampie, the
triangles of & themselves or the dual mesh (see Fig. 2).
They are constructed as follows: for each point M, the con-
trol volume is obtained by connecting the midpoints of the
segments adjacent to it and the barycenter of the triangles of
which it is a vertex. Let us denote by {C,} the set of control
volume. We only require the following properties:

» Forany i # j, C,n C;is of empty interior,
« C;is connected and has a polygonal boundary,

« the vertices of the boundary of C; depends continuously
on the nodes of the mesh .#. This is true for the two exam-
ples above.

» The boundary of C, is a locally regular curve. This is
also true for the two examples above.

We consider the following problem (problem 2 or
approximation in the mean for short}):

Let u be a regular enough function (say in L'). Given
N and » two integer numbers, a set of control volumes
F={C.,} cicn find a element PeR,[X, Y] such
that for 1 /<N,

(2)
This solution admits a unique solution if and only if;
« N={n+1)}{n+2)2=Nn)

Ts
M,

N

Edge of the control volume

FIG. 2. Element of the dual mesh.
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» the following Vandermonde type matrix is non-
singular:
V=[{X'Y ]

i+j€n
[sisN

t (K, (g, = XDq X7 'Wg o (¥,

1 <X>cr‘v <Y>CfN (X">C,N <X"‘1Y>C,N (Y">q~

(3)

If A, =det ¥ £0, then we will often say that this stencil is
admissible. In that case, there is a unique solution to
problem # that will be denoted by P,.

A similar problem was first considered by Barth et al.
[17] for smooth functions, then by Harten eral. [14],
Vankeirsblick ef al. [16], and Abgrall [12].

In the first three references [17, 14, 16], the authors con-
sider overdetermined systems for two related reasons: the
problem 2 does not always have a unique selution; its con-
dition number is very bad. They claim that the condition
number of the overdetermined system is better than that of
problem # which easily justifies the extra cost of CPU and
memory. In [12], the same approach as here was adopted,
where the minimem number of stencils is used. To support
that choice, we must note, as is explained in Remark 1, that
(3) is generally not singular. Second, the condition number
of the linear system mainly depends on the basis used for the
polynomial expansion, as it is shown in Section 2.4. The
basts that appears naturally in Taylor expansion is the only
one considered in [ 17, 14, 167. The condition number of the
linear system can be shown to be of the order of # ", where
n the degree of the polynomials and A is a measure of the size
of the mesh, as is shown in Section 2.4. A much better choice
can be made; it leads to a linear system for which the condi-
tion number is independent of h. Thus, we have favored this
approach which has the advantage of simplifying the coding
of the global scheme.

Remarks. 1. We do not know if the admissibility con-
dition admits a geometric interpretation (except for n=1).
We do not even know whether there is a systematic way of
constructing admissible stencils, as is the case for the
Lagrange interpolation [18]. Nevertheless, one may say
that, in general, any stencil is admissible; one may consider
the equation 4, =0 as an algebraic surface in R*** for
some integer £.! This surface is then of empty interior, from
a topological point of view, so that if & is not admissible,
one only has to change slightly the elements of & to obtain
an admissible stencil. Nevertheless, the condition number of
the linear system may be very bad. We will discuss that
point in Section 2.4,

!This is becavse we have assumed an algebraic dependency on the
control volumes in terms of the points of .#.
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2. This admissibility condition is independent on the
basis chosen for cxpanding the polynomial P.

2.2. Some General Results about the Approximation
in the Mean

In this section, we give two results on the behavior of the
expansion of P,, the solution of problem & for a function w,
in the regions where u is smooth or not. They generalize
well-known properties on the Lagrange interpolation of 1D
real valued functions that have been used as a cornerstone
by Harten and his coauthors to design an essentially non-
oscillatory reconstruction. We have to emphasise the fact
that the reconstruction in the mean is nor directly related to
the Lagrange one. Throughout this section, if % is an
admissible stencil for degree », the symbol K{% ") denotes
the convex hull of the union of the elements of 7.

22.1. Case of a Smooth Function

In [12], we have shown the foliowing result. Its proof
follows easily from Ciarlet and Raviart’s proof on Lagrange
and Hermite interpolation: )

THEOREM 2.1. Let & be an admissible (for degree n)
stencil of R?, let h and p be respectively the diameter of K(&)
and the supremum of the diameters of the circles contained in
K{(5). Let u be a function that admits everywhere in K(¥) a
(n + V) th derivative D"+ 'y with

M, o =sup{i|D" " 'u(x)il; xe K(#)} < + 0.

If P, is the solution of problem P, then for any integer m,
0sm=n,

n+1

sup{|D"ulx)— D"P(x); x€ K(F)} < CM,, ra

Jor some constant C=C(m, n, ). Moreover, if &' is
obtained from & by an affine transformation (Le., there exists
xo€ R? and A an invertible matrix such that

CLe & iff there exists C, e ¥ such that Ci = AC, + x,)

then
Cln,m, F)=C{n,m F').
This result basically expresses that if the stencil & is not
too flat, i.e., the ratio A/p is not too large, then P, will be a

good approximation of u. Let us turn now to the case of
unsmooth functions.

2.3. Case of an Unsmooth Function

We only discuss the case of piecewise smooth functions.
This is large enough for our purpose. To do the analysis, we
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have to introduce the following property which prevents
geometrical degeneration.

Property 22. Let us give ¢ >0. The admissible stencil
™ belongs to 27 if and only if the following property is
true: Let u be any function the average of which on any ele-
ment of & is either 0 or 1. Moreover, one assumes that
there exists an element C; € #*" such that {u), =1 and
an element C, € " such that {u>c, = 0; hence P, is non-
constant. Then P, is exactly of degree n and the sum of the
absolute values of its coefficients of degree n is larger than .

Then we can prove [12] the following theorem that
describes the asymptotic behavior of the icading coefficients
of the approximation in the mean of a piecewise smooth
function.

TueoreM 2.3.  Let ¢ be a positive real number and '™ an
admissible stencil for degree n such that there exists an affine
transformation sf as in Theorem 2.1 for which o (') e P7.
Let (xq, ¥o) be any point of the set K(¥™) and u a real
valued function defined on a open subset Q of R containing
K(F™). We assume that w is C*~ ', p<n, in Q and, except
on a locally C' curve, admits a continuous and bounded pth
derivative with a jump [D%u], [[D*u]l > M, > 0. Then, the
highest degree coefficients of the Taylor expansion of P,
satisfies

M,

Y la)=Cln p8) tss

itj=n

(4)

where C{n, p,&} is a constant independent of ¥ and
invariant by affine transformation.

This result tells us that in the vicinity of a discontinuity
curve that is smooth enough, then the leading coefficients of
P, will tend to infinity as the mesh size tends to zero, while
in the area where # is smooth enough, these coefficients
always remain bounded. These two results are exactly the
ones that have been used to derive the 11D ENO reconstruc-
tion algorithms by Harten et 2l Now we have to answer an
important question, how do we compute safely these poly-
nomials?

2.4. Study of the Linear Problem to Solve
for the Reconstraction

In this section, we intend to study the numerical system to
solve for P, from the data. We will consider two kinds of
expansion of P,:

1. the “natural” expansion for any point (x4, y,) € R?

Po= ¥ ay(X~x0)' (Y~ o) (5)

i+jisn

2. an expansion using “barycentric” coordinate that we
describe now: let #"={C,, C,, Cs,... Cnem} be an
admissible stencil. Hence, at least one subset of three
elements of %' is an admissible stencil for n=1. We may
assume that the set {C,, C,, C;} is admissible. We consider
the three polynomials A, of degree 1, defined by

Ay e, =01, 1<€ig3, 1<7<3. (6)
The symbol &/ is the Kronecker symbol. Clearly, we have
A +A4,+A4,;=1. These polynomials are the barycentric
coordinates of the triangle constructed on the gravity cen-
ters of C,, C,, and Cj;. In order to obtain expansion {5), a
strategy may be to look first for the expansion of the poly-
nomial P, in terms of power of 4, and 4,

P= Y ayAiA}, {7)

i+jsn

and then to obtain the Taylor expansion of P, around the
barycenter of €, from (7) (Theorems 2.1 and 2.3 give
the behavior of the leading coefficients of P,, whatever the
point chosen in the convex hull of 7).

In order to obtain the expansions (5) or (7), one has to sclve
linear N(n) x N(n) systems,

-@(aoo"'a(Jn)Tz(<u>c,-l"‘ <u>C.N[R|)T’ (8)

where the matrix 9 is obtained by taking the average of
(X—=xg) (Y—yp) for (5) and AL4S for (7). The
lexicographic ordering is adopted, so that the coefficient a;
refers to (X —xq) (Y,,) or A544. Let us now study the
properties of these linear systems.

24.1. Case af Expansion (5)
A very easy consequence of the inequality (4) is that:

PROPOSITION 2.4. Let us assume that the conditions of
Theorem 2.3 hold, and let h be the supremm of the diameters
of the spheres containing K(& ). Then the condition number
of system (8) is at least G(h™") for h small enough.

Proof. For the sake of simplicity, we consider the
following norm on R,[X, Y} for P=3,, ;<. a{X —x;)
(Y- yo), WPl =21 1 <niayl- On RM™, we consider the L'
norm. Let I/ be a set of data for the right-hand side of (%)
and consider the perturbation 8/,

SU=(0---g-.-)7,

where ¢ is in the /th position, { = N(n — 1) + 1. All the other
entries of {J are zero. If one considers the function u defined
on | €; by

xeC, u(x)=2oU,,
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one can apply Theorem 2.3. Hence, the perturbation 4P has
a norm satisfying

16P1> ¥ 10a,1>C o

i+ j=n
since ||6U/)| = e. This complete the proof.

This fact is well known for 1D Lagrange interpolation
and has motivated the search of more efficient algorithms,
such as the Newton algorithm. There exist algorithms that
generalize it [19, 207]. They involve numerous solutions of
linear systems, so that we have preferred a more classical
approach (see Section 2.5), for which the coefficients of the
linear systems are obtained from the “barycentric” coor-
dinate expansion (7) as is explained now.

2.4.2. Case of Expansion (7)
In the case of expansion (7), we have the following result:

PROPOSITION 2.5. If Property 2.2 holds for some ¢>0,
then the condition number of the system (B) for the expansion
(7) is bounded above and below by constants independent of

h, the supremum of the diameters of the circles containing
K(y‘")).

Proof. The proof is also based on that of Theorem 2.3,
As in Proposition 2.4, the only thing that we have to do is
to study the effect on the a;’s of a perturbation U, We
denote by P the polynomial which averages are defined
by éU. The proof can be achieved in two stages:

i. Let B be any invertible matrix. Consider the stencil
S = {B[Cij] + Xo}1<ienm

for any x,. It is clear, from the definition of the A, that
A; (%)= 4,(x) if £=Bx + x,. Hence, the sum S(P) of the
absolute values of the coefficients of P in the basis
A%{x) A4(x) is the same as that of the development of P in
the basis A L(%) A 4(%). This is an homogeneity property.

2. Since the set of stencils defined by Property 2.2 is
compact, S{) is bounded below and above, independently
of B, hence, independently of &:

C, > F> Cyle, n) > 0.

The constant C,{s, n) is larger than zero because 6U #0.

This achieves the proof. ||

2.5. The Explicit Calculation of the Reconstruction

From the previous results, the evaluation of the coef-
ficients a; in (5) is done through those of (7) and hierarchi-
cally. For the sake of simplicity, we assume that for any
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p<n, the set &' of the N(p) first elements of &' is
admissible for order p. This can be achieved with a suitable
numbering of the elements of &™. The idea is, instead of
looking directly for the coefficients of P, to obtain first
those of all of the P*’s, the reconstruction over &}, for
1 € k<n and then to construct those of P™, In the ENO
algorithm described in Section 2.6, this involves no extra
cost and simplifies the evaluation of the a;’s. This has also
the advantage of reducing the size of the Iinear systems and
also of improving their condition number. Assume that
PO P are known.
We first obtain the coefficients of P71 — pto)

P(p+1)_,P(m= Z

i+jgp+t

azAL 44,

if

by solving the linear system

a\ _ A, Bpp+1)(a1)=(u,)
AP+1 (az) (Cpp+l Dpp+1 az “z (9)
In Eq.(9), a, (respectively a,) stands for the coefficients
{az}iv jcp (resp. {@;}iy j=p+1)- The block matrices A,
B,,.1.C,, ., and D, ., are defined according to this
decomposition, In particular, we note from the hypothesis
that A, is invertible.

From the conservativity property, we obtain u, =0, so
that the system (9) can be split:

al=1~—Ap"Bpp+1a2 (IO)
[_'Cpp+l‘4; Bpp+1+Dpp+1] a,=1,.

Since ,9’“”* b is admissible, E,=[~C,,, IAE‘B”“ +
D, ,.1] is also invertible, so that one can obtain a,, then
a,, and, last, the coeflicients of P7+1).

Simple manipulations show that

P+l _E;'lcpp-{-IA;l E;l ’

so that one can quite easily look for the next step. In our
case, since the total degree of the reconstruction is less than
or equal to 4, at most two stages of that method are needed.

Last, one must note that the condition number of that
method is always better than the one of the original system;
it depends only on the condition number of a part of it.

2.6. A Quasi Minimal Family of Potential Stencil
for the ENO Reconstruction

In [12], we have found that only a small number of
stencils was indeed necessary to achieve an essentially non-
oscillatory reconstruction of a piecewise smooth function.
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FIG. 3. Stencils for third- and fourth-order reconstruction.

This set has to be as isotropic as possible. Moreover, the
ENO reconstruction was found to achieve the expected
order of accuracy for smooth functions, even on very
irregular meshes. In what follows, a; always stands for any
of the coefficients of the reconstruction P in the natural
basis, {(X — xo)’ (¥ — ¥o)’}. Let us describe our procedure
up to fourth order:

1. Let us start from a given cell, C, assigned to a point
of A, say (xq, yo)

2. Consider all the triangles having (x,, y,) as a vertex
and choose the one, say T_;,, that minimizes

Y lagl

ivj=1

Here, %) is the set of control volumes affected by the ver-
tices of T, (see Fig. 3a}. For a regular unstructured mesh,
there are of the order of six possible triangles.

3. Consider T,,,. For any of its three edges, consider
the three triangles, T, T, T as in Fig. 3a. There are three
possible configurations. We choose the one that minimizes
the sum

Y layl.

i+ j=2

4. Consider, as in Fig. 3b, the configuration for third
order. It is obtained as follows: for a stencil ¥'*) made of the
control volumes associated to the vertices of {1, T,
T., T}, one may consider its “edges” made of the external
sides of {T5, T3}, {72 Tomin}> { Tmins 13} Consider one of
them, say {T,, T3}, and the vertices a, §, and y. Since the
triangulation is conformal, there exists a triangle 7, # T, on

the other side of [«, §7. Consider T for [§, y]. Then, for the
same reasons, one can construct T, T,, T, and T,. The
stencils for fourth-order recomstruction are the union of
%1 and the control volumes associated to the additional
vertices of either {T4, Ts, T, T7} or {T4, Ts, Tg, Ty} oF
{Ty, Ts, Ty, Ts}. For a stencil &2, there are at most 12
stencils for fourth-order reconstruction.

The situation seems to become more and more complicated
as the degree increases. Nevertheless, there is a very easy
way to simplify it, so that at each level only three stencils for
(n+ 1)th order have to be considered from a nth-order one,
as we did from second order to third order. Let us give a
mesh .#; we want to derive a (n + 1)th-order reconstruc-
tion method. The idea is to work with the control volumes
defined for a mesh .# . For each triangle T of .#, we add the

FIG. 4. Additional nodes (@) in (A4, B, C) forn=13.
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points and the triangles associated to the P, Lagrange inter-
polation in T [21].

The additional points are constructed as follows. Any tri-
angle of the coarse mesh can be mapped onto a rectangular
triangle (4, B, C), as on Fig. 4. We denote by 4, (resp. A,
and A.) the barycentric coordinate toward A (resp. B and
C) and consider the points 4, which barycentric coor-
dinates are A,(A4;)=i/(n+1), ig(d;)=j/(n+1), and, of
course, Ac(Ady)=1—(+ f)/(n+ 1). We request that / and /
are positive integers such that i+ j > 0; thus the additional
points are inside (A4, B, C) and are different of 4, B, and C.
The new triangles are shaped as it is suggested on Fig. 4.

2.7. The ENO Reconstruction: Summary of the Method

Given a piecewise smooth function » and a cell C, the
{n+ 1)th-order ENO reconstruction R(u, n+ 1) of uin Cis
obtained after the following steps:

t. One has to define a family of potential stencils with
the help of the algorithm presented in Subsection 2.6. This
gives a set of stencils for each order p, 1< p<n+1, such
that a stencil for order p > 2 is constructed from a stencil for
order p~ 1.

2. Starting from the family of stencils for second-order
approximation, one looks for the triangle that minimizes
the sum of the absolute values of the Taylor expansion of
the [inear reconstruction toward the gravity center of C.

3. Then, one looks for the family of stencils for third-
order reconstruction that is constructed on the triangle that
has been previously chosen. One chooses the stencils of that
family that minimizes the absolute value of the highest
degree coefficients of the Taylor expansion towards the
same point.

4.  One continues the procedure hierarchically up to the
requested order of accuracy.

3. A CLASS OF HIGH ORDER NUMERICAL SCHEME
FOR COMPRESSIBLE FLOW SIMULATIONS

3.1. The Euler Equations

Let us quickly recall elementary things about the Euler
equation of a calorically perfect gas:

aw  GF(W) 8G(W)
1 T+T—O‘ (11)

As usual, in Eq. (11), W stands for the vector of conserved
quantities and F (resp. ) is the flux in the x direction (resp.
y direction):

p

w=|*"),
Fely
E

pu
put+ p

puv
u(E + p)

F(w)= (12)

pu

puv
poi+p
v(E+ p)

G(w)=

with initial and boundary conditions. In Eq. (12), p is the
density, « and v are the components of the velocity, E is the
total energy, and p the pressure, related to the conserved
quantities by the equation of state:

p=(y— 1)(£—3p(u®+v%)). (13)

The ratio of specific heats, y, is kept constant.
It is well known that the system defined by Egs. (11),

(12), and (13} is hyperbolic: for any vector n= (n,, n,), the
matrix

oF oG

A=n L
T AT

(14)

is diagonalizable and has real eigenvalues and eigenvectors.
Let us describe now the construction of a kth order scheme.

3.2, Finite Volume Formulation

We consider a mesh . and the control volumes as on
Fig. 2. The semi-discrete finite volume formulation of (11) is

a _
EE Wilty=—

1
area(%) J‘a@iﬁf,[W(x, 1)) dl = Z{2). (15}

Here, W(t) is the (spatial) mean value of W(x, t) at time ¢
over €, n=(n,, n,) is the outward unit normal to 8%, and
F,=n,F+n,G. We first describe the spatial approximation
of (15), then the temporal discretization of the resulting
set of ordinary differential equations. Last, we detail the
boundary conditions,

3.2.1. Spatial Discretization

For the sake of simplicity, we define the integer number
p such that either k=2p or k=2p+ 1. The first step is to
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discretize %(f) up to kth order. First, we can rewrite
areal%;) £(1) as

J,, FalWs 01dt=3 |

r, s

F,IWix, 0ld,  (16)

where, as on Fig. 2, the I',’s are the edges of %,. On each [,
n is constant. We consider, on any I, the p Gaussian points
{G:}1 <1<, associated to the Gaussian formula of order
2p+ 1. The integral {, F [ Wix, 1}] d! is approximated by

P

2 wlgﬂ,f(l)s

=1

(7

where %, ,(¢) is defined now. Set %, to be the other control
volume of which I, is a part of the boundary. In %, and
%, one computes the ENO reconstructions at time 7 of W,
R.IW(., 1), k]and R, [ W{(., 1), k], up to order k. The ENO
reconstruction of Section2 is applied to the physical
variables, then one deduces the conserved ones. From that,
we set, in Eq. (17):

%, (1) =F 7 [R,IW(-, 1), k)(G)),

R,[W(., 1), kK1(G,)}. (18}

In Eq. (18), & M™" may be any of the available Riemann

solvers. In all the examples below, we have chosen Roe’s
Riemann sclver with Harten-Hyman entropy correction.

3.2.2. Temporal Discretization

Equations {15}, {16), (17), and (18} define a finite set of
ordinary differential equations that we symbolize by

2,0 240,

Y {19)

In (19), Z (1) is the discrete version of .%(t). This equation
is discretized by the kth-order version of the Runge-Kutta
scheme of Shu [973:

-1
W5”= Z L%m WE"”"‘]BImg‘}m)]a

m=0
I=1,2,.,p, 2M=Z(wi™) (20)

WO=wr  WwP=wrth

The order of accuracy, as well as its TVD properties, is
achieved by adequate sets of coefficients «,,,, 8,,,, and p (see
[9] for details).

3.2.3. Boundary Conditions

Let I" be the boundary of the computational domain and
let n be the outward normal unit on I”. We assume that I'is
divided in two parts, F=TIyn I, on which different
boundary conditions will be used. Here, I, represents a
solid wall while I"_, represents the far field (inflow or out-
flow).

We do not treat a boundary condition by forcing the
value of a variable to a prescribed boundary value, but
consider instead the integral formulation (15) and apply the
boundary condition by modifying the flux integrals on 0%;
for those cells such that I &%, # (.

For example, for a vertex i located on [, we do not
impose the slip condition U -n =10, but we take this condi-
tion into account in the evaluation of the convective {lux,

- 0

pny
Fon 8%;

L fn,+ Gn,=

0 0 j.
For 8€;

0

pn,

The pressure integrals are computed as

[ mnf
o o8 Iy 86

men| e
o &%

'[I'nr‘\ 2€;

For a vertex located on I, we again use an approximate

Riemann solver. We define a far field state W, n,=

[ r, o mand set, in agreement with what has been done in
the interior of the computational domain,

Fn_\,+Gny=¢(Wf: Wuo7ni)' (21)

ernaqg,-

In Eq. (21), @ is a numerical flux function. For simplicity
reasons, we have chosen a modified Steger-Warming flux,
instead of the Roe one:

BW,, W n)=AF W+ A W,

The matrices A and 4 are the positive and negative parts
of the matrix 4 defined in (14} and evaluated for W= W..

In all the examples we have treated below, the boundary
here was either fully subsonic or fully supersonic, so that the
procedure was really simple, contrary to what would have
been added in mixed type boundary conditions.

Finally, we have reduced the order of accuracy of the
reconstruction for cells that are too near the boundary. For
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them, a proper calculation of the ENO stencil may be
impossible because the set of possible stencils is biased in
one direction due to the boundary. For the third-order
scheme, these cells are those related to a mesh point
that belongs to a triangle having at least one point on the
boundary. For the fourth-order scheme, they are those
belonging to a triangle, a vertex of which is related to a cell
for which a reduction of order must be done for the third
order.

3.3, Positivity of the Density and the Pressure

As pointed out by Harten et al. {231, in some situations
and for extremely few cells, the ENO reconstruction of the
density and pressure may lead to negative values. For these
cells, and these cells only, following [237], we reduce the
order of accuracy with the following inductive method (w is
either the density or the pressure; w, is its average on %))
Consider, in €, the reconstruction

n

Rw,n{ X, Y)=3 3 a,(X—x)"(Y—y,)".

=0 ptg=1!

I 5725, gui @l [(r—x,)? (y =yl Zatw at a
Gaussian point (x, p), then the reconstruction, for that
point, is set to R(w, n— 1)(x, y}. Then, we repeat the test if
necessary. Usually, the parameter « is set to 0.95.

In all the simulations we have done, the tests were
positive for a very small set of cells and a zeroth-order
reconstruction was never used. They were never positive

for the second-order scheme. This number is problem
dependent. For example, only at most three points caused
problems from time to time for the facing step problem with
a 5000-node mesh. They all were located in the front shock.

4. NUMERICAL TESTS

All the examples we propose now have been computed
with the second and third ENO schemes. The ratio of
specific heats, y, is always set to 1 4.

4.1. A Linear Advection Problem

In order to test the precision of these schemes, we have
computed the advection of a sine wave on different totally
unstructured meshes with an increasing number of points.
The convection velocity was parallel to the x axis but since
the meshes are totally unstructured, there is no privileged
direction. Figure 5 shows, in the abscissa, the logarithm of
the maximum radius of the circumscribed circles of the tri-
angles of the meshes, and, in the ordinate, the logarithm of
the maximum absolute value of the difference between the
computed and the exact solution. The slopes —~2 and —3
are indicated, so that one can see that the expected order of
accuracy is indeed achieved.

4.2. A Shock Tube Problem

We have set up a two-dimensional shock tube probiem in
the square [0, 1] x [0, 1]. Its boundary are solid. The initial
conditions are:

2|

35

45 .

5}

5.5 F

A - 'l

26 2.4 22

-2 -1.8 -1.6

FIG. 5. Representation of the logarithm of the L_, error in term of the logarithm of the maximum radius of the circumcircles.
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FIG. 6. Shock tube: velocity field at time 1 =09.

If x<0.5 and | y — 0.5 < 0.25,

p=1,
u=v=0,
p=1,
else
p=0.125,
u=v=00,
p=01.

The mesh is completely unstructured with 2127 nodes and
4088 triangies. The velocity field obtained by the third-order
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FIG. 7. Zoom of the velocity field in [0.5, 1] x [0.25,0.75]. Second-
order solution.
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FIG. 8. Zoom of the velocity field in [0.5,1]x [0.25,0.75]. Third-
order solution.

scheme at time ¢ = 0.9 is displayed in Fig. 6. The differences
between both results are more clearly visible in the near
stagnation zone. In order to represent that area better, we
have removed from the velocity field all the points for which
the sum of the absolute values of its two components is
larger than 0.15. The result is shown on Figs. 7 {second
order) and & (third order). One can clearly observe that the
number of small structures of the flow are much more
important in Fig. 8 than in Fig. 7. The shocks in the upper
and lower parts of the pictures also have a different resolu-
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FIG. 9. Portion of the mesh used for the step case.
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FIG. 10. Density contours fot the second-order ENO solution, 1 =4,
min = 0.329, max = 4.64. Density contours from 0287 to 4.584, 4p =0.14.

tion. Their location is also different but this can be seen only
by superimposing the pictures.

One shoulid also mention that this test is not particularly
easy for our method. After a few time steps, the shock
reflects with the wall. The reflected shock interacts with the
other structures of the flow, leading to interactions between
the various kinds of discontinuities and with the smooth
parts of the flow. The multiple points, as shown on our
figures, with different kind of discontinuities (contact and
shock) are resolved by our method without any particular
trick.

4.3. A Mach 3 Wind Tunnel with a Step

We have run this test case, that is well documented in
[24], for the second-order and third-order ENO schemes
on a 5140 node and 9958 triangle mesh. This discretization
corresponds to the medium mesh used in {24]. A portion of
it is displayed in Fig. 9. It is totally unstructured. The condi-
tions of the problem are the following: a uniform Mach 3
flow is set in a channel. At the initial time, a step of relative
height 0.2 is installed in it. The channel length is 3 and the
step is located at 0.6. This situation creates a shock that
reflects on the upper part of the channel; then it evolves fo
a lambda shock as the time increases. It interacts with the
upper part of the step. A weak shock is also created by the
expansion wave at the corner. This shock interacts with
the reflected one, creating a slip line. The location of this slip
line is very dependent on the boundary conditions that are
set at the corner,

Here, no special treatment is done, contrary to what
is advocated in [24], so that the quality of the second

FIG. 11. Density contours for the third-order ENO solution, =4,
min = 0.287, max = 4.584, 4p = 0.14,

-1 -0.5 0 0.5 1 15 2 2.5

FIG. 12. Cross section of the density, y =0.5: <, second order; +,
third order.

reflected shock is poor. We only want to verify the effect of
the increasing order of accuracy on the solution, so that we
will only look at the first reflected shock. The solutions of
Fig. 10 (second-order ENQO) and Fig, 11 (third-order ENO)
are shown. A clear improvement on the thickness of that
reflected shock can clearly be seen from the horizontal cress
section of the density at y = 0.5, Fig. 12. The slip line coming
from the lambda shock is also more visible in Fig, 11 than
in Fig. 10, as well as the weak shock near the corner.

4.4, Reflection of a Shock on a Wedge

This problem is also well documented in the literature. In
order to achieve a correct solution, one has either to use
very fine meshes or adapted meshes (see [5], for example).
We have chosen a case where the planar shock enters from
the left in a quiescent fluid. Its Mach number is M ;=55
and is defined towards the flow values in the quiescent fluid
where the density is set to 1.4 and the pressure to 1. One
expects a double Mach reflection.
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FIG. 13. Portion of the mesh used for the Mach reflection problem.
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FIG. 14. Refection of a planar shock by a wedge: density contours,
second-order solution. Min = 1.4, Max = 17.3. Contour from 1.4 to 19.088,
4p =036,

The mesh has only 8569 points and 16806 triangles. A
part of it is shown in Fig. 13. The density contours of the
two calculations are displayed in Fig. 14 (second order) and
Fig. 15 (third order). A very clear improvement of the slip
line coming from the Mach stem can be observed. The
seccond triple point can also been observed in Fig. 15,
although it is of poor quality because of the insufficient
resolution of the present mesh, but it is totally
indistinguishable in Fig. 14. Generaily speaking, ali the dis-
continuities are better resolved by the third-order scheme.

FIG. 15. Refection of a planar shock by a wedge: density contours,
third-order solution. Min = 1.4, Max = 19.0088, 4p =0.36.

5. CONCLUSIONS

A third-order ENO scheme has been derived on tri-
angular type unstructured meshes; this demonstrates that
deriving ENO schemes on unstructured meshes is some-
thing possible. We indicate how to build higher order ENO
schemes and give some comments on the numerical stability
of the reconstruction step.

This new scheme has been tested on a set of well-known
test cases and compared to a second-order one. In all cases,
the results are clearly improved. Our results also
demonstrate its robustness. The cost of the scheme is four
times that of the second-order one (on a Cray YMP) but the
code is far from being optimized. In particular, no effort has
been made in the ENO reconstruction procedure, the most
expensive routine, so that this ratio can be considered as a
bad upper bound.

In the near future, we will derive the fourth-order version
of this class of sch¢mes. The two schemes will be coupled
with a dynamic adaptation procedure [3] to improve its
efficiency.
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